Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Appl Mater Today ; 32: 101792, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2282763

ABSTRACT

A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.

2.
Journal of Materials Science & Technology ; 2022.
Article in English | ScienceDirect | ID: covidwho-1747757

ABSTRACT

Metals have been used for wound treatment and toxicity testing since ancient times. With the development of nanotechnology, metal oxides have been proven to have excellent sterilization and disinfection functions. However, the rapid bacterial inactivation efficiency and trapping physicochemical killing ability remain simultaneously undemonstrated in antibacterial nanohybrids. Here, we demonstrate a method for in-situ reduction of small-sized Cu2O particles on one-dimensional inorganic halloysite nanotubes (HNTs). The resultant Cu2O@HNTs hybrids not only give Cu2O excellent dispersibility, but also exert the synergistic effect of the charge adsorption of metal oxides and the physical piercing effect of the small-sized nanotubes. Furthermore, the release of Cu2+ from hybrids damages cell membranes and denatures proteins and DNA. Through this sterilization mechanism, Cu2O@HNTs allow for the inactivation rate of Escherichia coli to reach 94.5% within 2 min and complete inactivation within 10 min. This excellent sterilization mode makes Cu2O@HNTs exhibit excellent broad-spectrum antibacterial activity and inactivation efficiency, while shows weak cytotoxicity. These hybrids were further applied in the processing of functional antibacterial fibers and fabrics. Thus, we believe that this excellent antibacterial hybrid is practically attractive in this critical time of the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL